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Abstract Heat shock proteins (Hsps) are overexpressed in a wide range of human cancers and are implicated in tumor
cell proliferation, differentiation, invasion, metastasis, death, and recognition by the immune system. We review the
current status of the role of Hsp expression in cancer with special emphasis on the clinical setting. Although Hsp levels
are not informative at the diagnostic level, they are useful biomarkers for carcinogenesis in some tissues and signal
the degree of differentiation and the aggressiveness of some cancers. In addition, the circulating levels of Hsp and
anti-Hsp antibodies in cancer patients may be useful in tumor diagnosis. Furthermore, several Hsp are implicated with
the prognosis of specific cancers, most notably Hsp27, whose expression is associated with poor prognosis in gastric,
liver, and prostate carcinoma, and osteosarcomas, and Hsp70, which is correlated with poor prognosis in breast,
endometrial, uterine cervical, and bladder carcinomas. Increased Hsp expression may also predict the response to
some anticancer treatments. For example, Hsp27 and Hsp70 are implicated in resistance to chemotherapy in breast
cancer, Hsp27 predicts a poor response to chemotherapy in leukemia patients, whereas Hsp70 expression predicts a
better response to chemotherapy in osteosarcomas. Implication of Hsp in tumor progression and response to therapy
has led to its successful targeting in therapy by 2 main strategies, including: (1) pharmacological modification of Hsp
expression or molecular chaperone activity and (2) use of Hsps in anticancer vaccines, exploiting their ability to act as
immunological adjuvants. In conclusion, the present times are of importance for the field of Hsps in cancer, with great
contributions to both basic and clinical cancer research.

INTRODUCTION

Levels of the heat Hsp molecular chaperones are elevated
in many cancers, and Hsp overexpression signals a poor
prognosis in terms of survival and response to therapy
in specific cancer types (Ciocca et al 1993; Cornford et al
2000; Blagosklonny 2001; van de Vijver et al 2002; van ’t
Veer et al 2002). Elevated Hsp expression in malignant
cells plays a key role in protection from spontaneous ap-
optosis associated with malignancy as well as the apo-
ptosis generated by therapy, mechanisms which may un-
derlie the role of Hsp in tumor progression and resistance
to treatment (Volloch and Sherman 1999; Nylandsted et
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al 2000a, 2000b; Ciocca et al 2003; Gyrd-Hansen et al
2004). Hsp transcription requires activated heat shock
transcription factor 1 (hsf1), which is itself overexpressed
in cancer and plays a role in invasion and metastasis (Wu
1995; McMillan et al 1998; Hoang et al 2000; Wang et al
2004). However, the molecular mechanisms linking in-
creased Hsp and HSF1 expression to tumor progression
are not currently understood. Because Hsps are induced
only under stress conditions in normal cells, some aspects
of the malignant phenotype apparently cause Hsp dys-
regulation (Lindquist and Craig 1988).

Heat shock proteins

Hsps were first discovered as a cohort of proteins that are
powerfully induced by heat shock and other chemical and
physical stresses in a wide range of species (Lindquist
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and Craig 1988; Georgopolis and Welch 1993). The Hsps
have been subsequently characterized as molecular chap-
erones, proteins, which have in common the property of
modifying the structures and interactions of other pro-
teins (Beckmann et al 1990; Gething and Sambrook 1992;
Netzer and Hartl 1998; Freeman and Yamamoto 2002).
Molecular chaperone function dictates that the Hsps often
interact in a stoichiometric manner with their substrates,
necessitating high intracellular concentrations of the pro-
teins (Lindquist and Craig 1988; Georgopolis and Welch
1993). As proteins that shift the balance from denatured,
aggregated protein conformation toward ordered, func-
tional conformation, Hsps are particularly in demand
when proteins are disordered by heat shock, oxidative
stress, or other protein-damaging events (Lindquist and
Craig 1988; Hightower 1991; Gething and Sambrook
1992; Georgopolis and Welch 1993). The Hsp28, 40, 70,
and 110 genes have therefore evolved a highly efficient
mechanism for mass synthesis during stress, with pow-
erful transcriptional activation, efficient messenger RNA
(mRNA) stabilization, and selective mRNA translation
(Voellmy 1994). Hsp27, 70, 90, and 110 increase to become
the dominantly expressed proteins after stress (Hickey
and Weber 1982; Landry et al 1982; Li and Werb 1982;
Subjeck et al 1982; Henics et al 1999; Zhao et al 2002).
Hsp gene transcription is regulated by transcription fac-
tors belonging to the heat shock factor (HSF) family that
ensure prompt transcriptional activation in stress and
equally precipitous switch-off after recovery (Sorger and
Pelham 1988; Wu 1995). The hsf gene family includes heat
shock transcription factor 1 (hsf1), the molecular coordi-
nator of the heat shock response, as well as 2 less well-
characterized genes, heat shock transcription factor 2
(hsf2) and heat shock transcription factor 4 (hsf4) (Rabin-
dran et al 1991; Schuetz et al 1991; Nakai et al 1997). In
addition to the Hsps induced by heat, cells also contain
a large number of constitutively expressed Hsps (Tang et
al 2005). Recent studies have shown that the constitutive
Hsps are found in a variety of multiprotein complexes
containing both Hsps and cofactors (Buchner 1999). These
include Hsp10 and Hsp60 complexes that mediate protein
folding and Hsp70- and Hsp90-containing complexes that
are involved in both generic protein-folding pathways
and in specific association with key regulatory proteins
within the cell (Netzer and Hartl 1998; Pratt and Toft
2003). Hsp90 plays a particularly versatile role in cell reg-
ulation, forming complexes with a large number of cel-
lular kinases, transcription factors, and other molecules.

Mechanisms for Hsp elevation

Hsp expression is tailored for induction by the stress re-
sponse, and the proximal signal for Hsp induction is ap-
parently the accumulation of denatured proteins (Voell-

my 2004). It is thus rather a mystery as to how the Hsps
become overexpressed in cancer. One hypothesis is that
the physiopathological features of the tumor microenvi-
ronment (low glucose, pH, and oxygen) tend toward Hsp
induction. Whether this is true or not, we do not know.
However, one recent study indicates that when cells are
transferred from tissue culture to growth as xenografts
in vivo, Hsp expression declines markedly (Tang et al
2005). Because the elevated Hsp levels associated with
malignancy tend to persist when cells are grown in tissue
culture, they may well be related to the genetic changes
associated with tumor progression (Tang et al 2005). On-
coproteins may appear during carcinogenesis (eg, mutat-
ed p53), and these mutated and conformationally altered
proteins may elicit an Hsp response. However, the exact
mechanisms are yet to be determined although they likely
involve molecular changes common to a wide range of
cancer cells with the potential to feed into the signaling
mechanisms that lead to HSF1 activation.

In this short review, we will provide an overview of the
current status of the Hsps in cancer with special empha-
sis on the clinical setting. This is not an easy task because
there are more than 200 types of cancers and there are
several Hsp families, each with multiple members (Tang
et al 2005). Finally, the process of carcinogenesis involves
a complex array of genetic and epigenetic alterations,
which contribute to cancer pathogenesis (Hahn and Wein-
berg 2002), leading ultimately to a unique cancer tissue
(often with mixed cancer clones) within a unique molec-
ular milieu and in this may change dramatically the Hsp
context and behavior. Therefore, we need to define
whether altered expression of the Hsps at genomic or
proteomic level is of importance to cancer prevention, di-
agnosis, prognosis, prediction, and treatment.

IMPLICATIONS IN DIAGNOSIS

In these cases, Hsp expression has been analyzed in re-
lation to the histopathological characteristics of the tumor
tissues (eg, tumor type, grade of differentiation), with the
expression of other molecules (eg, estrogen receptors, c-
myc, mutated p53), and with patient parameters like sex
and age. In addition, levels of circulating Hsps and anti-
HSP antibodies have been correlated with patient and tu-
mor characteristics. Table 1 summarizes the publications
regarding the diagnostic implications of the Hsps in can-
cer.

Because of space limitations, we cannot perform a de-
tailed analysis of each study (eg, adequacy of the number
and homogeneity of samples incorporated). However, the
following main conclusions can be made. (a) Diagnostic
implications—Hsps are overexpressed in a wide range of
malignant cells and tissues. Therefore, Hsp detection is
not useful in diagnostic immunopathology (there are oth-
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Table 1 Heat shock proteins in cancer: diagnostic implications

Hsp Author(s) Findings

Breast cancer
Hsp27 Ciocca et al (1990) 1: correlation with estrogen receptors

Vargas-Roig et al (1997) Overexpression: low cell proliferation
Muñoz de Toro and Luque (1997) Lack of association with ER in male bc
Keeling and McKee (1999) 1: smears, suspicious of malignancy

Hsp70 Tauchi et al (1991) 1 Hsp70 and c-myc: in 63% of carcinomas
Takahashi et al (1994) Associated with elevation of ER, but ,p53
Lemoisson et al (1994) Association with PR isoforms
Iwaya et al (1995) Bound to mutant p53 in certain cases only
Vargas-Roig et al (1997) 1: high cell proliferation, mitotic spindle
Lazaris et al (1997) 1c: LN metastasis, poor differentiation

Hsc70 Townsend et al (2002) No correlation: BAG-1, ER, tumour grade
Grp78 Fernandez et al (2000) Overexpression: malignant not benign, ER2
Hsp90a Jameel et al (1992) Overexpression: LN involvement

Lemoisson et al (1994) Association with PR isoforms
Yano et al (1999) Higher: cancer, correlated with cyclin D1

Endometrial cancer
Hsp27 Ciocca et al (1985) Increased in hyperplastic endometrium

Ciocca et al (1989) 1: correlation with ER, well different ca
Navarro et al (1992) Overexpression in low-grade endometrial stromal sarcomas; neg-

ative: high grade
Korneeva et al (2000) Antibodies: detected in cancer patients
Wataba et al (2001) Overexpression in hyperplasia and some ca

Hsp70 Nanbu et al (1996) 1: poor differentiation, p53 1, ER2
Hsp90 Nanbu et al (1996) Overexpression: well diff., ER/PR1

Ovarian cancer
Hsp27 Langdon et al (1995) .Hsp27: malignant tumors, advanced ca

Schneider et al (1998) Coexpression with P-glycoprotein (MDR1)
Korneeva et al (2000) Antibodies: detected in cancer patients

Hsp72 Athanassiadou et al (1998) Hsp72 and p53: in undifferentiated ca
Hsp90 Mileo et al (1990) .: advanced stages; no cor.: ER, PR, EGFR

Luo et al (2002) Autoantibodies: late-stage cancer

Uterine cervix
Hsp10 Cappello et al (2003a) Overexpressed during carcinogenesis
Hsp27 Ciocca et al (1986) Marker of metaplasia

Dressler et al (1986) Associated with squamous cell maturation
Ciocca et al (1989) Lack of correlation with ER, PR
Puy LA et al (1989) 1: more differentiated tumours
Ciocca et al (1992) HPV-induced changes in expression
Korneeva et al (2000) Antibodies: detected in cancer patients

Hsp60 Cappello et al (2003b) Higher levels during carcinogenesis
Hsp70 Ralhan and Kaur (1995) 1: cancer tissue, .in increased tumor size

Kim et al (1998) Correlated with proliferation, not with ER
Abd el All et al (1998) Correlated with c-myc, malignancy marker
Park et al (1999) 1: stage I; no correlation: p53, ER, or HPV

Choriocarcinoma
Hsp27 Vegh et al (1999) Downregulation (high sensitivity to chem.)

Oral cancer
Hsp27, . . . Ito et al (1998) Hsp27, 90: 1 in dysplastic lesions: no correlation with clinical

stage, p53
Hsp27, 60, 70 Kumamoto et al (2002) Expressed in ameloblastomas
Hsp27 Leonardi et al (2002) Upregulation in highly differentiated scc
Hsp70 Kaur et al (1998) Increasing levels with carcinogenesis, in poorly differentiated scc,

.clinical stage

Salivary gland cancer
Hsp27, etc Vanmuylder et al (2000) Hsps 27, 70, 70, 90, and 110 were less expressed in malignant

tumors

Oesophageal cancer
Hsp27 Soldes et al (1999) Decreasing levels with carcinogenesis (Barret’s metaplasia and

oesophageal adenocarcinomas)
Lambot et al (2000) Increases with carcinogenesis (dysplastic lesions to invasive

squamous ca)
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Table 1 Continued

Hsp Author(s) Findings

Gastric cancer
Hsp90b Liu et al (1999) Increased expression in cancer tissues

Liver
Hsp27 Ciocca et al (1991) 1: some hepatocellular carcinomas, no correlation with ER and

HBV
Delhaye et al (1992) Higher expression in hepatomas than in nontumorous liver

CCTbeta Yokoto et al (2001) Increased expression in hepatocellular ca
Hsp70 Chuma et al (2003) Marker of early hepatocellular carcinoma

Pancreatic carcinoma
Hsp47 Maitra et al (2002) 1: neoplastic epithelium, stromal desmoplasia
Hsp90a Ogata et al (2000) Overexpressed in carcinomas

Colorectal carcinoma
Hsp10 Cappello et al (2003a) Overexpressed during carcinogenesis
CCTbeta Yokota et al (2001) Increased expression in colonic cancer cells
Hsp60 Cappello et al (2003) Overexpression: early event in carcinogenesis
Hsp70, 110 Hwang et al (2003) Expression: advanced disease, 1LN
gp96 Heike et al (2000) High expression: primary and metastatic ca

Nasopharyngel cancer
Hsp70 Jalbout et al (2003) Hsp70-2 homozygous genotype: associated with susceptibility to

cancer

Lung cancer
Ubiquitin, etc Michils et al (2001) Ubiquitin, Hsp27: no increased expression; Hsp60, Hsp70: in-

creased expression
Hsp27, 70 Malusecka et al (2001) Hsp271: 70% of nsclc, more in scc

Nuclear Hsp701: correlation with Ki-67
Hsp63, 70, 90 Bonay et al (1994) Expression: no correlation with histologic type; ,differentiation.

Hsp70 and 90
Hsp70, 90 Zhong et al (2003) Antibodies to Hsp70: .patients with nsclc; antibodies to Hsp90:

no correlation with ca
Grp94 Wang et al (2002) Overexpression: in cancer, poor dif., .clinical stage

Urinary system cancer
aB crystallin Pinder et al (1994) High expression: renal cell carcinomas
Hsp27 Storm et al (1993) Overexpressed in 50% bladder ca, no correlation with LN1, etc.
Hsp27, Cryst. Takashi et al (1998) Hsp27 levels: .in renal cell ca than normal; aB crystalline: also

.but without statistical significance. Lowest Hsp27 levels in
testis tumors

Hsp27, 60, 70 Kamishima et al (1997) Differential expression of the Hsps in a bladder carcinosarcoma
Hsp70 Efferth et al (2001) 1: blastemal and epithelial components of nephroblastomas;

.Hsp70 after chemother
Hsp90 Cardillo et al (2000) Overexpression: in high-grade and muscle-invasive bladder carci-

nomas, cor. with IL-6

Prostate cancer
HSF1 Hoang et al (2000) Upregulated in prostate carcinoma
Hsp10, 60 Cappello et al (2002–2003, 2003c) Overexpressed in early prostate carcinogenesis
Hsp27 Storm et al (1993) Prostate: absence in normal and ca tissue
Hsp27, 60, 70 Cornford et al (2000) Hsp27 lack of expression: early in situ ca; Hsp60 expression:

.early and advanced ca; Hsp70 expression: ,in advanced ca
Hsp70 Abe et al (2004) Plasma levels might have a role in early-stage cancer

Leukemia, lymphoma
Hsp27 Strahler et al (1991) Phosphorylated isoform present in pre–B acute lymphoblastic

leukemia
Hsp27, 70, 90 Xiao et al (1996) Hsp27: high expression not confined to a specific type of acute

leukemia; Hsp70; ,expression in leukemia, Hsp90: .expres-
sion in leukemia

Hsp27, 60, 90 PL Hsu and HM Hsu (1998) High levels in Reed-Sternberg cells
Hsp60, 70, 90 Chant et al (1995) All showed .expression in acute myeloid leukemia compared

with chronic myeloid leukemia

Nervous system tumors
aB crystalline Numoto (1996) 1: pineal large tumor cells
Hsp27, cryst. Hitotsumatsu et al (1996) High Hsp27: glioblastomas, anaplastic tu.; aB-crystallin: schwan-

nomas, chordomas
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Table 1 Continued

Hsp Author(s) Findings

Hsp27 Kato et al (1992) 1: 5/21 meningiomas; 1 in other tumors
Yokoyama et al (1993) 1: 22/26 cases of meningiomas
Ungar et al (1994) .expression: .diff. neuroblastomas, inverse correlation with N-

myc
Khalid et al (1995) .expression in high-grade astrocytomas
Assimakopoulou et al (1997) .expression in more malignant astrocytomas
Assimakopoulou (2000) Expression in meningiomas, absence of ER
Assimakopoulou and Varakis (2001) Expression in astrocytomas 1 for c-Jun and c-Fos (ascending in

malignancy)
Hsp27, 79, 90 Strik et al (2000) Expressed in all high-grade and most low-grade gliomas, 1 in

oligodendrogliomas
Hsp27, 60, etc Kato et al (2001) Hsp60 is coexpressed with other Hsps in several primary and

metastatic tumors

Pituitary adenoma
Hsp27 Gandour-Edwards et al (1995) 1: in invasive adenomas
Hsp70 Kontogeorgos et al (1999) Colocalization with cytoplasmic p53; no correlation with apoptosis

Adrenal adenoma
Hsp27, 60, 70 Pignatelli et al (2003) Hsp27, 70: ,in Cushing’s adrenal tissue, whereas Hsp60 in-

creased

Skin cancer
Hsp27 Kanitakis et al (1989) Marker of differentiation of keratinocytes; basal/squamous ca

showed high expression
Trautinger et al (1995) Marker of differentiation of keratinocytes; basal/squamous ca

show low expression
Hsp27, 72 Bayerl et al (1999) Hsp27: high expression in basal call ca (in contrast to squamous

cell ca); Hsp72: low expression

Melanoma
Hsp27, etc Missotten et al (2003) Hsp27 and gp96: relatively high expression, whereas Hsp70 and

90 had low expression
Hsp70 Lazaris et al (1995) Expression: correlated with clinical stage

Osteosarcoma
Hsp60, 70 Trieb et al (2000a, b) Hsp60 antibodies: high in osteosarcomas; Hsp70 antibodies: pa-

tients with lung met

Chondrosarcoma
Hsp27, etc Trieb et al (2000c) Hsp72 expression: low differentiation

Abbreviations: bc, breast cancer; c, cytoplasm; ca, carcinoma(s); chem, chemotherapy; cor, correlation; EGFR, epidermal growth factor
receptor; ER, estrogen receptors; HBV, hepatitis B virus; HPV, human papillomavirus; LN, lymph node; met, metastases; PR, progesterone
receptors; scc, squamous cell carcinoma; nsclc, non–small cell lung carcinoma.

er more restricted molecular markers to identify the lin-
eage of origin of cancer tissues: carcinoma, sarcoma, lym-
phoma, etc). However, it might be useful to apply in a
panel of immunopathology antibodies, the detection of
aBcrystallin for identification of renal cell carcinomas
(Pinder et al 1994), and the detection of Hsp27 or Hsp90
for identification of Reed-Sternberg cells (Hsu and Hsu
1998). The presence of Hsps and antibodies to the Hsps
in the serum of cancer patients is still a new research area.
Although it seems that autoantibodies to certain Hsps are
of significance as tumor markers in osteosarcomas, ovar-
ian cancer and others, at present, we need more studies
to draw a clear conclusion on this important subject. The
same applies to the study of the polymorphism of the
Hsp70-2 gene. (b) Carcinogenesis—Hsp expression levels
can help indicate the presence of abnormal changes dur-
ing the process of carcinogenesis (in certain tissues). For
example, Hsp27 is overexpressed in hyperplastic endo-

metrium, and this protein appears as a marker of squa-
mous metaplasia in the uterine cervix; Hsp10 and Hsp60
are related with the process of carcinogenesis of the uter-
ine cervix and colon; and Hsp70 is associated with car-
cinogenesis of the oral epithelium and as a marker of ear-
ly hepatocellular carcinoma. In oesophageal carcinomas,
Hsp27 decreases during the carcinogenesis that ends in
adenocarcinomas but increases during the carcinogenesis
that ends in squamous carcinomas. Then, Hsps can be
used as subrogate biomarkers of certain cancers. (c) Dif-
ferentiation—Hsp expression correlates with the degree
of differentiation in certain tissues. Hsps associated with
higher differentiation are: Hsp27 and Hsp90 in endome-
trial carcinomas, Hsp27 in squamous carcinomas (uterine
cervix, oral epithelium), and Hsp27 as a marker of kera-
tinocyte differentiation in the skin. In contrast, Hsps as-
sociated with poor differentiation are Hsp70 in cancers
of the breast, ovary, and oral epithelium, Grp78 in lung
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carcinomas, and Hsp27 in astrocytomas. At present, we
do not have a clear explanation for these disparities and
associations. Hsp70 has been involved not only with poor
tumor differentiation but also with increased cell prolif-
eration (breast, uterine cervix, lung), lymph node metas-
tasis (breast, colon), increased tumor size (uterine cervix),
presence of mutated p53 (breast, endometrium), and
higher clinical stage (oral, colon, melanoma). (d) Associ-
ations with other molecules—In general, several Hsps are
coexpressed in cancer tissues; in addition, certain Hsps
can be significantly associated with other molecules. For
example, Hsp27 has been associated with ERa in female
breast carcinomas and endometrial carcinomas, but this
protein did not appear associated with ERa in male
breast carcinomas, cervical uterine carcinomas, hepato-
cellular carcinomas, and meningiomas (tissues that may
express ERa). It is interesting that Hsp27, which was first
described as an estrogen-regulated protein, is signifi-
cantly associated with ERa in the female breast and en-
dometrium (Table 1). These 2 organs are under strong
estrogen and progesterone regulation. On the other hand,
Hsp70 has been described as an important molecule in
the assembly and trafficking of steroid receptors, and in
breast cancer, Hsp70 has been found associated with ERa
(Takahashi et al 1994). It is of interest to mention that
Hsp70 can increase ERa transcriptional activity and
growth in MCF-7 breast cancer cells (Spears and Barnes
2003), which in turn may explain the increased cell pro-
liferation found in breast tumor biopsy samples that ex-
press Hsp70 (Vargas-Roig et al 1997). In addition, Hsp70
has been associated and complexed with mutant p53 in
cancer cell lines (Lehmann et al 1991). This association
has been studied in several cancer tissues, and the results
have shown this association in certain cases only.

IMPLICATIONS IN THE PROGNOSIS

We have seen that expression of certain Hsps can be cor-
related with the carcinogenic process as well as with the
degree of differentiation and cell proliferation, and more-
over, they have been implicated in the regulation of ap-
optosis. Therefore, it was reasonable to study the prog-
nostic implications of Hsps, and they emerged as useful
in certain cancer types. The prognosis of a particular can-
cer patient is very important in the clinic to individualize
cancer treatments, to plan the patient’s follow-up, and to
answer questions from the patient or relatives. Overther-
apy with cytotoxic drugs can be avoided in cancer pa-
tients if they are correctly identified as having good prog-
nosis and vice versa (Table 2). Again, because of space
limitations, we cannot perform a detailed analysis of each
study; however, the following conclusions can be made
about the Hsps that have been studied most. (a) Hsp27—
breast cancer is one of the sites where numerous studies

on prognostic factors have been reported. To date, at the
proteomic level, we can establish a categorization of sev-
eral prognostic factors that, integrated with the tradition-
al clinicopathological factors, provide a very good idea of
the disease outcome (Gago et al 1998). Hsp27 is not
among the list of useful prognostic factors in breast can-
cer (Oesterreich et al 1996). Hsp27 expression has been
associated with poor prognosis in ovarian, gastric, liver
and prostate cancer, and osteosarcomas. In contrast,
Hsp27 expression has been associated with good prog-
nosis in endometrial adenocarcinomas, oesophageal can-
cer, and in malignant fibrous histiocytomas. Although
there are fewer studies in other cancers, the data suggest
that Hsp27 has no prognostic value in head and neck
squamous cancer, bladder and renal cancer, and leukemia
(except when associated with other markers). There are
contradictory data in oral cancer and ovarian cancer. (b)
Hsp70—Hsp70 expression is correlated with poor prog-
nosis in breast cancer, endometrial cancer, uterine cervical
cancer, and transitional cell carcinoma of the bladder.
This is consistent with the Hsp70 associations with poor
differentiation, lymph node metastasis, increased cell pro-
liferation, block of apoptosis, and higher clinical stage,
which are markers of poor clinical outcome. In contrast,
high Hsp70 expression was correlated with good prog-
nosis in oesophageal cancer, pancreatic cancer, renal can-
cer, and melanoma. Hsp70 expression showed no corre-
lation with prognosis in ovarian cancer, oral cancer, head
and neck squamous cancer, gastric and prostate cancer,
and leukemia. (c) Hsp90—Hsp90 expression in cancer tis-
sues and presence of autoantibodies to Hsp90 have been
correlated with poor prognosis in breast cancer. In con-
trast, Hsp90 expression is associated with good prognosis
in endometrial cancer. Loss of Hsp90 (and Hsp60) ex-
pression has been associated in bladder carcinoma with
invasive recurrence risk. Hsp90 expression was of no
prognostic value in ovarian and oral cancer.

It is evident that we need more studies on Hsps to
confirm whether they have prognostic value in specific
cancers. At this point, it is tempting to speculate that the
unique molecular context or milieu present in each cancer
type drives the correlations of Hsps with the disease
prognosis. For example, in breast cancers, Hsp90 can be
chaperoning the oncoprotein HER-2/neu and the mutat-
ed p53 protecting these molecules from degradation by
the proteasome, which is good for the tumor but bad for
the patient. In contrast, in endometrial cancers Hsp90
may be chaperoning progesterone receptors contributing
to its maturation, maintaining a more differentiated and
less aggressive tumor phenotype with a better response
to synthetic progestational agents. Therefore, depending
of the cancer type, each Hsp has unique associations with
the prognosis of the disease.
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Table 2 Heat shock proteins in cancer: prognostic implications

Hsp Author(s) Findings

Breast cancer
Hsp27 Thor et al (1991) 1: ,DFS in patients with 1–3 LN1

Damstrup et al (1992) No correlation with DFS or OS
Love and King (1994) No correlation with DFS or OS
Têtu et al (1995) No correlation with DFS or OS (LN1)
Oesterreich et al (1996) No value in prognosis (LN negative)
Conroy et al (1998a) Serum antibodies: improved survival
Fanelli et al (1998) 1 in serum: no correlation with metastases

Hsp70 Ciocca et al (1993) Shorter DFS
Elledge et al (1994) p532/cytoplasmic Hsp701: better OS
Mestiri et al (2001) Homozygous genotype: increased OS
Thanner et al (2003) Cytoplasmatic Hsp70: decreased OS

Hsp90a Jameel et al (1992) High expression: early recurrence, ,OS
Conroy et al (1998b) Autoantibodies: poor survival

Endometrial cancer
Hsp27 Geisler et al (1999) 1: better OS

Piura et al (2002) Overexpression: better prognosis
Hsp70 Nanbu et al (1998) Poor survival (univariate analysis)

Piura et al (2002) Overexpression: worse prognosis
Hsp90 Nanbu et al (1998) Overexpression: favorable prognosis

Piura et al (2002) Overexpression: better prognosis

Ovarian cancer
Hsp27 Langdon et al (1995) .Hsp27: ,OS

Geisler et al (1998) Overexpression: .OS
Schneider et al (1998) No correlation with survival
Arts et al (1999) Overexpression: ,OS (but not in multivariate analysis)
Piura et al (2002) Overexpression: worse prognosis
Elpek et al (2003) Expression: ,OS

Hsp60 Kimura et al (1993) High expression: ,OS
Schneider et al (1999) Overexpression: better OS

Hsp70 Elpek et al (2003) Expression: no correlation with OS
Hsp90 Elpek et al (2003) Expression: no correlation with OS

Vidal et al (2004) Antibodies in stage IV disease

Cervical (uterine) cancer
Hsp70 Piura et al (2002) Expression: worse prognosis

Oral cancer
Hsp27, . . . Ito et al (1998) Hsp27, 60, 70, 90: no correlation with survival
Hsp27 Mese et al (2002) Expression: poor survival (scc)

Head and neck squamous cancer
Hsp27, 70 Gandour-Edwards et al (1998) Expression: no correlation with survival

Oesophageal cancer
Hsp27, 70 Kawanishi et al (1999) Lower expression: poor survival (scc)

Nakajima et al (2002) Hsp271: better prognosis; Hsp70 low expression: poor prognosis
Hsp70 Noguchi et al (2002) 1: better prognosis (univariate analysis)

Gastric cancer
Hsp27 Harrison et al (1991) 1: ,OS

Takeno et al (2001a) .Hsp27 and p53: poor survival
Kapranos et al (2002) 1: ,OS (univariate analysis)

Hsp70 Maehara et al (2000) Expression: no correlation with survival

Pancreatic cancer
Hsp70 Sagol et al (2002) .expression: .OS

Colorectal
mHsp70 Dundas et al (2004) .expression: poor survival

Liver cancer
Hsp27 King et al (2000) .expression: ,DFS and OS

Prostate cancer
Hsp27, 60, 70 Cornford et al (2000) Hsp27 expression: poor clinical outcome; Hsp60 and Hsp70: no correlation
Hsp27 Bostwick (2000) Overexpression: ,survival

Renal cancer
Hsp27 Erkizan et al (2004) No correlation with DFS
Hsp70 Santarosa et al (1997) Favorable prognostic factor
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Table 2 Continued

Hsp Author(s) Findings

Bladder cancer
Hsp27 Storm et al (1993) No correlation with local recurrence, distant metastases, or survival (small

sample number)
Hsp27, 60, 90 Watson et al (2003) Loss of Hsp60 and 90: infiltrating recurrence risk

Low Hsp27 and 60: .tumor grade
Hsp70 Syrigos et al (2003) 1: .grade, .stage and ,OS

Leukemia
Hsp27, 70 Stammler and Volm (1996) No correlation with DFS or OS
Hsp27 Kasimir-Bauer et al (2002) Coexpression with other molecules: ,OS

Melanoma
Hsp70 Konstadoulakis et al (1998) Expression: .OS

Ricaniadis et al (2001) 1: improved OS

Osteosarcoma
Hsp27, etc Uozaki et al (2000) Hsp27 overexpression: negative prognostic value (,OS, neoadjuvant-treat-

ed patients)

Malignant fibrous histiocytoma
Hsp27 Têtu et al (1992) Expression: .MFS, .OS

Abbreviations: DSF, disease-free survival; LN, lymph node; MFS, metastasis-free survival; OS, overall survival; scc, squamous cell car-
cinoma.

PREDICTIVE IMPLICATIONS

There are studies exploring the use of the Hsps to predict
the response (or lack of response) of a set of cancer pa-
tients to a specific treatment(s) (Table 3). These studies
are very important because they may tailor the treatment
strategy to individual cancer patients. These studies may
be aided by a clearer understanding of the molecular link
between the malignant phenotype and Hsp expression
although such studies are currently at a very early stage.
The following conclusions can be deduced from the pub-
lished data (considering only those papers that presented
a relatively large number of patients, with an homoge-
neous treatment, and with a clinical follow-up). (a)
Hsp27—Although the expression of Hsp27 correlated
with that of ERa in breast cancer, detection of Hsp27 does
not predict the response to tamoxifen. Hsp27 expression
was found in 31% of prostate cancer patients refractory
to hormone therapy (Bubendorf et al 1999), although we
need more studies on this important subject. Regarding
chemotherapy, Hsp27 overexpression has been correlated
with a shorter disease-free survival in advanced breast
cancer patients who received neoadjuvant chemotherapy
(Vargas-Roig et al 1998). This clinical implication of
Hsp27 expression with resistance to chemotherapy is in
agreement with studies performed in ovarian cancer, in
head and neck cancer, esophageal squamous cell carci-
noma, and leukemia (in association with other molecular
markers). Hsp27 has shown no predictive value to che-
motherapy in rectal cancer, malignant fibrous histiocy-
toma, and central nervous system tumors (induction ra-
diochemotherapy). Regarding the brain tumors, we
should point out that glioblastoma multiforme is rather

resistant to radiochemotherapy and that these tumors al-
ready show a high expression of Hsp27 (as well as other
Hsps) and that a further elevation in Hsp content may
not correlate with a more resistant phenotype. We need
more studies to know whether Hsp27 is related to radio-
resistance or radiosensitivity in cancer. The molecular
mechanisms involving Hsp27 and other Hsps in resis-
tance to cancer therapies can be explained in several
ways: (1) as molecular chaperones they can confer cyto-
protection by repairing more efficiently the damaged pro-
teins resulting from cytotoxic drug administration, (2)
protecting cancer cells from apoptosis (Arrigo et al 2002),
(3) protecting the microvasculature inside tumors, be-
cause Hsp27 is found in endothelial cells (Ciocca et al
2003), and (4) enhancing DNA repair (Mendez et al 2003;
Nadin et al 2003). (b) Hsp70—Although Hsp70 expres-
sion is associated with ERa expression in breast cancer,
Hsp70 (like Hsp27) did not show predictive value for ta-
moxifen administration. In contrast, Hsp70 is emerging
as a predictor of resistance to chemotherapy in breast
cancer. Moreover, high Hsp70 levels predicted lower re-
sponse of breast cancers to radiation and hyperthermia.
In a recent study in multiple myeloma cells using oligo-
nucleotide arrays, Chauhan et al (2003) identified several
members of the Hsp family (including Hsp70) among the
molecules conferring resistance to the conventional treat-
ment with dexamethasone. Interestingly, they reported a
new compound that overcomes dexamethasone resis-
tance, which decreased the levels of Hsp27, Hsp70, and
Hsp90 in the myeloma cells. Cancer cells have several
defense mechanisms against cytotoxic drugs, which may
be redundant, and in order to predict more accurately the



Cell Stress & Chaperones (2005) 10 (2), 86–103

94 Ciocca and Calderwood

Table 3 Heat shock proteins in cancer: predictive implications

Hsp Author(s) Findings

Breast cancer
Hsp27 Seymour et al (1990) 1: better response to combination therapy (chemotherapy

and tamoxifen for ER1)
Damstrup et al (1992) Does not predict response to endocrine therapy
Ciocca et al (1998) Does not predict response to tamoxifen
Vargas-Roig et al (1998) Shorter DFS (neoadjuvant chemotherapy)

Hsp70 Ciocca et al (1993) Predictor of recurrence (adjuvant therapy)
Liu et al (1996) Higher: ,resp. radiation and hyperthermia
Ciocca et al (1998) Does not predict response to tamoxifen
Vargas-Roig et al (1998) Shorter DFS (neoadjuvant chemotherapy)

Ovarian cancer
Hsp27 Langdon et al (1995) .Hsp27: resistant to chemotherapy

Germain et al (1996) No correlation with chemoresistance
Arts et al (1999) Univariate analysis: absence of Hsp27 correlated with lon-

ger median progression-free survival
Piura et al (2002) Overexpression: poor response to chemoth

Cervical (uterine) cancer
Hsp27 Vargas-Roig et al (1993) Hsp27: no correlation with response to tamoxifen

Head and neck cancer
Hsp27 Fortin et al (2000) Expression: did not correlate with local response to radio-

therapy (transfected cells with .Hsp27: thermoresist-
ance and chemoresistance)

Oesophageal cancer
Hsp27 Takeno et al (2001b) Hsp27: involved in resistance to neoadjuvant C1R (scc)

Rectal cancer
Hsp27/70 Rau et al (1999) No correlation with treatment (H1R1C)

Lung cancer
Hsp70 Volm and Rittgen (2000) Weak correlation with resistance to doxorubicin (nsclc)

Bladder cancer
Hsp27 Kassem et al (2002) Downregulation in radiosensitive bccl
Hsp60 Zlotta et al (1997) Increased anti–Hsp 60 IgG after BCG therapy: .tumor re-

currence

Prostate cancer
Hsp27 Bubendorf et al (1999) Overexpression: 31% of hormone-refractory tumors, 5%

of primary tumors

Leukemia
Hsp27 Kasimir-Bauer et al (1998) Coexpression of Hsp27 and other molecules predicts re-

sponse to induction chemother

CNS tumors
Hsp27, 70, 90 Hermisson et al (2000) Does not predict response to induction radiochemothera-

py. However, glioblastoma cells express high levels of
Hsps

Osteosarcomas
Hsp60, 70 Trieb et al (1998) Hsp721: better response to neoadjuvant chemotherapy
Hsp90 Trieb et al (2000a) Antibodies: .response to neoadjuvant chemotherapy

Malignant fibrous histiocytoma
Hsp27 Têtu et al (1992) Expression: no correlation with response to chemotherapy

Abbreviations: bccl, bladder carcinoma cell line; C, chemotherapy; scc, squamous cell carcinoma; H, hyperthermia; nsclc, non–small cell
lung carcinoma; R, radiotherapy.

resistance of cancer cells to certain therapies, it will be
necessary to examine alternative pathways. Moreover, at
the proteomic level, we will need to examine not only the
expression but also the localization of the Hsps because
this seems to be an important factor in their predictive
value (Vargas-Roig et al 1998). Depending on the type of

cancer (and their molecular profile and interactions), the
Hsps can have a more marginal predictive role; for in-
stance, in lung cancer, Hsp70 showed a weak predictive
value compared with other molecules (Volm and Rittgen
2000). On the other hand, in osteosarcomas, Hsp70 pre-
dicted a better response to neoadjuvant chemotherapy
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Table 4 Heat shock proteins in cancer: treatment implications

Hsp Author(s) Findings

Examples of preclinical studies
HSF1 Xia et al (2003) HSF1-transfected bcc undergo apoptosis when treated with heat shock1H7 (ser-

ine-threonine kinase inhibitor)
Hsp27 Rocchi et al (2003) Antisense oligonucleotide increased apoptosis in hpcc

Rocchi et al (2004) Antisense oligonucleotide enhanced apoptosis and delayed prostate tumor pro-
gression

Hsp65 Chu et al (2000) Use of BCG Hsp65 linked to HPV16 E7
Hsp70 Ciupitu et al (2002) Hsp70 (tumor derived) elicited protection against an induced sarcoma (vaccine)

Nylandsted et al (2002) Adenovirus-expressing antisense Hsp70 cDNA effective to eradicate glioblastoma,
breast ca and colon ca in nude mice

Noessner et al (2002) Hsp70-peptide complexes: transferred to human dendritic cells by receptor-depen-
dent uptake (vaccine)

Feng et al (2003) Use of Hsps from syngeneic normal tissue as adjuvant with nonimmunogenic apo-
ptotic tumor cells

Chauhan et al (2003) Use of an estrogen derivative in multiple myeloma cells downregulates Hsp27/70/
90

Grp78 Lee et al (2003) Supression of grp78 (gene therapy): elimination of cancer cells
Hsp90 Chiosis et al (2001) Molecule that binds Hsp90 causes HER-2 degradation, growth arrest, and differen-

tiation of bcc
Mitsiades et al (2002) Effect of proteasome inhibitor PS-341 in cancer cells
Lee et al (2002) Radicicol (Hsp90 inhibitor)-induced degradation of estrogen receptor alpha
Solit et al (2003) Inhibition of Hsp90 (17AAG) downregulated Akt kinase and sensitized tumors to

taxol
Smith V et al (2003) 17-DMA-geldamycin: novel Hsp90 inhibitor
Barril et al (2003) Novel and improved Hsp90 inhibitor

Hsp110 Wang et al (2003a) Hsp110-gp110 complex: suppressed the growth of established tumors (vaccine)
Manjili et al (2003) Hsp110-HER-2/neu vaccine: inhibited spontaneous mammary tumors

Grp170 Wang et al (2003b) Tumor-derived grp170: prolonged survival of metastases-bearing mice (vaccine)

Clinical studies
Vaccines with Hsps

Gp96 Janetzki et al (2000) Immunization with autologous gp96 elicited MHC I–restricted, tumor-specific CD81
T lymphocytes

Belli et al (2002) Gp96-peptide complexes: in metastatic melanoma patients (17.8% CR/SD)
Assikis et al (2003) Phase II: metastatic renal cell carcinoma (34.4% showed PR, CR or SD)
Mazzaferro et al (2003) Gp96-peptide complexes in patients with metastatic (liver) colorectal cancer

Drugs/compounds targeting Hsps
Hsp90 Solit et al (2003) 17AAG: phase I trial

Banerji et al (2003) 17AAG: phase I trial, with evidence of tumor target inhibition

Abbreviations: ca, cancer; bcc, breast cancer cells; CR, complete response; hpcc, human prostate cancer cells; PR, partial response;
SD, stable disease; 17AAG, 17-allylamino,17-demethoxygeldanamycin; 17-DMA, 17-dimethylaminoethylamino-17-demethoxygeldamycin.

(Trieb et al 1998), which may be explained by the differ-
ent molecular context of these tumors. However, we need
more studies regarding the predictive value of Hsps in
cancer to deduce the precise significance of HSP expres-
sion.

IMPLICATIONS IN THE TREATMENT

This is an exciting new door for the field of Hsps in can-
cer. Hsp and the HSF family could provide a true Achilles
heel for cancer therapy because they seem to be required
for cell survival during tumor progression and metastasis
(Volloch and Sherman 1999; Hoang et al 2000; Nylandst-
ed et al 2000a, 2000b; Jones et al 2004). Hsps or HSFs may
be targeted by drugs and new classes of drugs targeting
Hsps are beginning to be deployed, most notably at this
time targeting Hsp90 (Neckers and Ivy 2003). The elevat-
ed Hsps may also provide a tempting target for immu-

notherapy protocols because they are able to chaperone
tumor antigens and act as biological adjuvants to break
tolerance to tumor antigens and cause immune killing by
cytotoxic CTL and tumor regression (Arnold-Schild et al
1999; Belli et al 2002; Manjili et al 2002; Noessner et al
2002; Srivastava 2002; Todryk et al 2003; Castelli et al
2004; Daniels et al 2004). Dependence on the selective
advantages for growth offered by the protective effects of
Hsps may thus render tumor cells vulnerable to detection
through immunosurveillance and killing by chaperone-
based immunotherapy. Table 4 shows the preclinical and
the few clinical studies implicating Hsps in cancer treat-
ment.

Agents that modify the molecular levels or molecular
capabilities of the Hsps—this is achieved by the inhibi-
tion of Hsp90 by the natural product geldanamycin or
the geldanamycin analog 17AAG. These drugs target the
nucleotide-binding site in the N-terminal domain of
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Hsp90, the same as the adenosine triphosphate–binding
site (inhibition of the adenosine triphosphatase activity)
causing inhibition of the binding of Hsp90 to the client
proteins (Workman 2002). These proteins are stress re-
sponse, or survival-related, or mutated proteins that with-
out the binding to Hsp90 are not properly folded (less
stable) and destroyed by the proteasome. For instance,
Hsp90 has been shown to bind mutant p53 more avidly
than wild-type p53 (Blagosklonny et al 1996). In normal
cells most Hsp90 is not bound to other proteins. There-
fore, the effect on normal cells of the Hsp90-inhibitory
drugs is not so drastic as in tumor cells. In fact, these
drugs are toxic, but the toxicity of 17AAG is manageable.
This strategy is interesting because of its ability to affect
multiple oncogenic substrates simultaneously; in the
phase I clinical trials on cancer patients, 17AAG produced
in some patients stable disease, higher apoptosis, and less
proliferation of the tumors but with lower potency than
radiotherapy or chemotherapy. Moreover, 17AAG can be
used in combination with radiotherapy or chemotherapy
(enhancement of sensitization). 17AAG has some limita-
tions such as limited solubility with low oral bioavail-
ability, complex formulation, and modest potency on tar-
gets, and it is a substrate for P-glycoprotein. This has in-
creased the interest in the search for other Hps90 inhib-
itors. Finally, HSF-1, Hsp27, Hsp70, and grp78 are also
targets of antisense oligonucleotide therapies or other
manipulations with possibilities for anticancer therapies.
These interesting approaches are still at the preclinical
level.

Use of Hsps as carriers/adjuvant to present tumor
molecules to the immune system—the objective is to
elicit in a cancer patient a specific and active immune
response against its own tumor using the Hsps as natural
adjuvants that present to the immune system the mole-
cules (usually protein fragments, polypeptides but also
relatively large molecules) that have shielded the poten-
tial epitopes from immune recognition. The immuniza-
tion is carried out with tumor-derived Hps (gp96, Hsp70,
and others), which bring attached the specific tumor pep-
tides. When injected as a therapeutic vaccine, the Hsps
interact with receptors on the professional antigen pre-
senting cells (dendritic cells, macrophages). These cells
introduce the antigen(s) into the MHC class I and II path-
ways, inducing a specific cytotoxic T lymphocyte re-
sponse and the production of proinflammatory cytokines
(Table 4, Srivastava et al 1998). Another approach is to
use recombinant Hsps with oncoproteins such as HER-
2/neu or proteins from oncogenic viruses such as E7 of
HPV. The tumor-derived auto-vaccines based on Hsp or
the recombinant Hsp fusion proteins induce cytokine and
costimulatory molecules with activation of CD41 and
CD81 T cells and increases in CD11c1 cells and NK cells
that kill tumor cells (Table 4, Rivoltini et al 2003). So far

the most promising effects are being obtained in renal
cancer and melanoma patients, but several other cancer
patients are being treated with the vaccines based on
Hsps including patients with colorectal, gastric and pan-
creatic cancers, leukemia, and lymphoma. These Hsp-
based vaccines exhibit minimal toxicity, and if they con-
tinue to show good results, they may ultimately be in-
corporated into the armamentarium against patients with
limited or minimal cancer disease (the immune system
has a relatively limited capacity to kill large tumor bur-
dens).

CONCLUSIONS

Our studies indicate a profound role for Hsp in many
aspects of tumor progression and response to therapy.
Although at the diagnostic level Hsps are not informative,
they are effective biomarkers for carcinogenesis in some
tissues and signal the degree of differentiation and ag-
gressiveness of certain cancers. In addition, the levels of
Hsp and anti-Hsp antibodies in the serum of cancer pa-
tients are useful in tumor diagnosis. Furthermore, several
Hsps are implicated with the prognosis of specific can-
cers, including Hsp27 expression, which is associated
with poor prognosis in gastric, liver, and prostate carci-
noma and osteosarcomas, and Hsp70, which is correlated
with poor prognosis in breast, endometrial, uterine cer-
vical, and bladder carcinomas. Hsp may also predict the
response to some anticancer treatments. Implication of
Hsp in tumor progression and response to therapy has
led to its successful targeting in therapy by two main
strategies, including: (1) pharmacological modification of
Hsp expression or molecular chaperone activity and (2)
use of Hsps as adjuvants to present tumor antigens to the
immune system. Study of Hsp in cancer at the cell and
molecular level, although promising, is still in its infancy,
and we currently have little information on how Hsp reg-
ulation is subverted in cancer and how Hsp dysregula-
tion affects the molecular events involved with tumor
growth, invasiveness, and metastasis. Such studies will be
essential in interpreting and directing the studies aimed
at targeting Hsps in cancer therapy.

Note: we apologize to the colleagues whose works have
not been cited in the present review because of space lim-
itations and our limitations in finding their work in the
literature search.
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